1c^2-6c-1=0

Simple and best practice solution for 1c^2-6c-1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1c^2-6c-1=0 equation:



1c^2-6c-1=0
We add all the numbers together, and all the variables
c^2-6c-1=0
a = 1; b = -6; c = -1;
Δ = b2-4ac
Δ = -62-4·1·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{10}}{2*1}=\frac{6-2\sqrt{10}}{2} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{10}}{2*1}=\frac{6+2\sqrt{10}}{2} $

See similar equations:

| (X-1)(x-2)(x+4)(x+5)=112 | | -65=n+8(1+9n) | | 1/10(x+11)=-2(x-8) | | -1/3=4/7u-1/2 | | x−9=12 | | (x+12)+(3x-2)+(4x-16)=180 | | 2+4x-15=8 | | 1(x+10)=1.5x | | -6v=180 | | 12(x+-5)=-36 | | 10(x-5)-3(3x+2)=2x+7 | | -7(w+5)–8=20 | | {12-x}{2}+3=1 | | 414=23d | | 2(1+2x)-3(4+x)=8 | | 43x+15=47x-2 | | (2x+3)^2+(x-5)^2=114 | | 5.7+3z=+0.3 | | 30r=540 | | -9(1+x)+4=22 | | –3r−8=5r+10−2r | | r/10=18 | | d/19=24 | | |m+4|=8−2m | | y=8(-1/3)+9 | | 5j=265 | | 2x^2-4x^2-50=0 | | 2z=890 | | 5•p=p•5= | | -15=x-30 | | 24=c/21 | | 6n+2=-7n^2 |

Equations solver categories